温馨提示:这篇文章已超过416天没有更新,请注意相关的内容是否还可用!
在当今的数学课堂,数学教师在教学中的活动设计往往以问题串的形式呈现。但在教学实践中发现,许多时候教师的提问还存在着诸多问题,不能真正激发学生进行深层次的数学思考,致使教学有效性、实效性、高效性得不到很好的实施,具体表现如下:
教师缺乏对教材的深入研究,缺乏对学生情况的充分了解,把他们估计得过高或者过低,所设计的问题在难度上要么过大,要么过小。过大时,超出学生的理解水平,学生不能与教师产生共鸣,常使全场沉默无言,教师不得不把问题分解,化难为易,使学生重新入轨。再者就是教师为了保证教学顺畅,把教学内容肢解成许多小问题,师生一问一答,教师问得从容,学生答得流畅,整齐划一,实质上很多问题没有思维价值,严格讲不能叫做问题。也正是这些虚假问题为学生开辟了一条思维通道,限制思维的方向和路线,带有去“问题化”的倾向。以上两种情况都无法对学生的思维进行适当的训练,使其停在无法思考、不用思考的状态下,自然谈不上启迪、诱导和开发了,阻碍了学生思维能力的培养。
教师提出问题后,没有给学生充分考虑和讨论的时间,就让他们回答,学生答不上来。此时教师不是想办法对学生进行启发诱导,调整思考的角度,换个说法矫正学生的思路,而是急急忙忙讲出答案,把学生应该做的工作取而代之。结果自己劳神费力设计的问题不解自破,无形中抑制了学生的积极性,影响了其学习情绪,造成学生的思维懒惰。时间长了,大家都不愿意回答问题,越是难题越是如此,这样对培养学生的能力,促进他们思维水平的提高有害无益。
很多教师在课堂上“是不是”“对不对”等问题充斥课堂。学生回答“是”能代表发自内心的认同;学生回答“对”,能表明其思维的清晰明朗。这样的问题只能折射出教师教学的肤浅,高明的教师是用心沟通的而无需通过“是不是”“对不对”来寻求自我满足。这样的问题让学生从小学会察言观色,试想:学生不回答“是”“对”又能怎样说呢?
有些教师提出的问题与教学内容相去甚远,尤其是不恰当的情景创设,造成的结果是“种了别人的田荒了自己的地”,导致教学始终在数学的外围盘旋,没有让学生触摸到数学的本质,没有了“数学味”。
要提高问题设计与提问的质量,教师应在授课前和授课中分别做好三个把握,上课前的三个把握为:
通过对教材的认真钻研,理解编者的意图,弄清单元章节的构成及其地位,掌握训练的基本要求,从而能够脉络清晰地分出重点、难点,从教学目的出发,以重点为突破口,设计出恰当的问题。这样使好的问题既有利于揭示数学本质,又有利于学生养成思考的习惯。
对学生的基础知识、行为习惯、学习态度、学习方法乃至班风班貌等有一个细致的了解,熟悉各方面的情况,这样设计的问题才能有的放矢,结合实际,学生才能适应,乐于接受。目的就是让好的问题不仅有利于学生寻求解决问题的策略,同时也培养学生的问题意识。
教师要善于根据不同课型,不同要求,不同的训练重点来设计问题,而不是千篇一律,从而达到因材施教。新授课上,教师要在新旧知识的衔接点设计问题,促使学生思索,探究新知识。练习课教师提的问题要有恰当的角度、幅度和坡度,复习课教师提的问题要有挈领而顿、百毛皆顺的功能,问题应从大处入手,让学生各抒己见,互相补充,便于形成知识网络。
一节好的数学课不是一讲到底,也不是一问到底,精讲巧问,处理好提问的节奏,安排好提问的时间距离,留给学生一定的思考时间,让学生和问题进行零距离接触,学生才能对所学的知识理解得更深更透。例如:教学《圆面积的计算》这一课时,先引导学生动手操作,将半圆分成若干个相等的小扇形,然后剪开,重新拼合,拼成一个近似的长方形后,老师只需设计两个问题即可:(1)请大家认真观察,拼成的近似的长方形和原来的圆形有哪些联系?问题提出后留给学生比较宽松的思维空间,通过思考学生要说的很多,学习好的学生可以抓住两图形之间的内在联系,中等生只是在语言条理上差一些,学习上有困难的学生也能说出一二来。这样便有利于学生理解,发现形变面积不变,这个近似的长方形的长就是原来圆周长的一半,宽就是原来圆的半径。(2)完成上述的发现后,老师可以再提出第二个问题:“根据上面的发现我们知道了长方形的面积怎么计算,那么,圆的面积又该如何计算?”由于学生明确了两个图形之间的内在联系,完全可以对头脑中储存的信息加工、整理,进而独自推导出圆的面积计算公式。
课堂上要处理好老师和学生之间的空间距离,在提问时,恰当的近距离可以使学生感到教师亲切的期待。因此教师要走下讲台,走到学生中间,认真倾听学生的意见,或者参与到小组活动中,成为学生学习的伙伴。更为重要的是处理好学生和问题之间的空间距离,所提的问题范围不能过于空洞,也不能过于狭窄,既不能让学生觉得无从下手,也不能太直太露,让学生无需思索就可回答,使提问失去意义。这就要求教师在设计问题时心中要了解学生的知识情况,在他们的知识最近发展区提问,对浅问题、直问题从较隐蔽的角度提问,拉开问题与学生的距离,留给学生思考的余地,对大问题难问题则需要大题小问,难题浅问,通过问题分解来缩短学生与问题的空间距离。
首先,拉近师生之间的心理距离,老师提问不要给学生一种居高临下的感觉,语气可以平缓一些,态度和蔼一点,提出问题后让学生思考一段时间再回答,如果学生回答有误,不要责备,更不能讽刺挖苦,允许学生出错,如果学生暂时回答不上来,教师要多加鼓励,让他别着急,想一想再回答。只有学生保持轻松的心理状态,敢想敢说敢做,才能得到令人满意的回答。
其次,教师要控制好学生和问题之间的心理距离,好的问题既有挑战性,又是大多数学生经过思维努力后能够解决的。这样的给学生“似曾相识又陌生”的感觉,让学生“跳一跳够得着”,增强学生解决问题的内驱力。由于学生在知识基础方面具有差异性,因此同一个问题与不同的学生之间心理距离是不同的,老师提问也不能“一刀切”,对于难度较大的题目可让优秀生来回答,对于难度一般的题目可以让中等生来回答,对于简单的问题可以让后进生来回答,让人人学有所得,人人都有成功的体验,每个人都能得到发展。如:在教《圆的面积》一课时,可按学生的实际学习能力,提出不同的学习要求,设计不同的问题:(1)阅读课本,你能按课本图示把圆拼成一个近似的长方形吗?他们之间有何关系?(后进生做答)(2)阅读课本,你能根据操作实践,说出圆面积公式的推导过程吗?(中等生回答)(3)你还可以用其他方法推导出圆的面积公式吗?(优等生回答)这样的问题,符合不同层次学生的心理水平,使他们能够各有所获。
再次,好的问题不但具有开放性,还要兼顾差异性。开放性,即目标是聚合的,思维是发散的,解决问题的策略是多样的;差异性,即能适合不同层次学生的需求,使每个学生都能调动已有的知识经验作出个性化的解答,让每一个学生都进行深入的思考。