温馨提示:这篇文章已超过456天没有更新,请注意相关的内容是否还可用!
高效优质的数学学习方法又有哪些的呢?小伙伴们可有了解过?不妨一起来关注下吧。那么,以下是小编为大家带来的高效优质的数学学习方法,希望您能喜欢!
一、集中精神,注意力高度集中地学习,才能有高效优质的学习结果。
1、明确自己的学习目的,学习的时候要给自己时间压力和效果目标设定;要提高学习效率,在平时做作业时也要自己规定一定的时间限制,尤其是考试时感觉时间紧张、不够用的同学,把平时当做考试,考试就如同平时一样不会因为慌乱而怯场平常就要训练自己,加快做题速度;
2、基本知识一定要弄清楚来龙去脉,数学基本知识包括:定义、定理、公式、公理、法则、性质、推论、图形、黑体字的例题习题、数学符号、数学方法,这些基本知识不能像一盘散沙,而应该是呈现一种网络结构,或者像一棵枝叶相连的大树;
能完整地复述方法或者思路探索过程并且能给别人讲明白才叫“会了”。
老师比学生数学水平高,不仅是解题能力高,思路敏捷,数学素养也高。因为他们天天给学生讲题,知识点高度系统化,融会贯通,能举一反三。如果同学们也经常给他人讲题,尽量给人讲得清楚明白,那么就能进入数学老师的思维,就能很容易把握出题者的意图,也会自己变题和编题。
三、要培养自己运算准确性。
很多学生考后讲:“题简单考得还行。”但最后分不高。原因是会做,但错了,不仔细,马虎了。这主要是因为:
1、做题时,一看会做的题,就很高兴匆忙地做,心里想着要省点时间去做不太会做的,又怕做不完,着急就图快,图快就容易错;
3、跳步。数学运算随着熟练程度的增加,可以跳步。但有同学跳步太多从而易出错;
1、少跳步;
2、少心算;
3、就是用草稿纸也要整洁,张老师建议同学们:草稿纸要每写一题要写题号,才开始写演算过程,要从上写到下,从左写到右,本题结束要隔一行,再写题号,打下一题的草稿,这样容易查找核对;
4、确保一次做对。不要抱着“先赶快做完再多检查几次的思想”,其实到了高考或中考,很少有时间去检查的。所以平时要养成“会做的题慢一点,一次就做对”的习惯。
5、确信“难题都是几道简单题组合而成的。”这会帮助你打消恐惧,因为当你学会了简单题,也学会了探索思路,那么,解难题在你的眼里就是轻而易举的事情。
一般人都会认为,基础很重要,要从基础开始,按部就班地进行理解,遇到不懂的地方,就要回到基础上来。这么想就很容易放弃学习数学,但空降学习法认为基础差的学生不需要有内疚感。
省略登山过程,直接乘缆车也可欣赏高山的风景。因此基础差的学生在要下决心学数学时,不必要在很低的知识基础开始复习,可以从正中央部分开始。倾尽全力把目前所学的部分弄懂,因为只要把这个地方弄懂,前面那些疑难之处,届时也就会自然而然地理解了。
空降学习法,只要用跳伞的方式降落到“目前所学的地方”就好了。其道理是只要把目前所学的部分弄清楚,前面不懂的地方也就会了解。因此,不必为没学好基础而自卑,应该利用“空降学习法”的思想,集中力量弄懂每一个面临的问题,若的确遇到了以前知识不理解的困惑,那就去请教老师和同学或查阅相关资料,降落在所需基础知识的层次上,将这一基础随时补上即可。
五、错题集
很多同学在做题的时候容易出现“思维定势”。同学们经常错同样或同类的题,而且考试时,往往又考到了这样的题。那么,你只要在平时作业、测验当中,筛选出这样的易错的题目,加以归纳整理,将错误的解法和正确的解法对比的记录下来,并写上自己的反思或体会,经常翻看,加深印象,这样考试就能少丢分,也能得高分。
根据艾宾浩斯遗忘曲线规律:一个人的记忆,经过一晚后,会忘掉80%。因为大脑不知道哪些是真正有用的知识,除非我们特意加强的记忆。有人说:“我记性不好。”这种说法是不对的,因为记忆力和记忆的习惯都是后天培养的。
1、睡觉前10分钟,把当天的重要收获梳理一遍,早上起来,再重复一次,那么你的记忆将会得到有效巩固;
2、反复背诵:数学公式当然是要用公式的来龙去脉来理解记忆。虽然理解了不会忘记,但是对于一些复杂的内容,不及时复习也会淡忘,一定要反复强化。正如关于记忆单词,特莱美学校的英语总监,留英学者,美领馆翻译兼省市领导的翻译刘老师曾经说过:“当你把一个单词忘了6次的时候,你就永远记得这个单词了。”不要希望一次就能背好,一天分早、中、晚三次试试,反复强化记忆;
3、要及时、周期性地安排时间复习所学内容,及时消化,巩固掌握,才能融会贯通,正所谓“温故而知新”。
1.高数中比较难的有微分中值定理和定积分的证明题,这一部分题目技巧性比较强,难度比较大。
2.数一的曲线积分和曲面积分在考试中得分率不高,而数二和数三在多元函数微积分里的要求虽然比数一低很多,但得分率也不高。导致这个现象出现的根本原因大多数考生对这一部分重视程度不够,从而对这一部分的内容生疏。
3.不按照常理出牌。如傅里叶级数,以往出现的频率很低,大概四五年才会出一道小题,但是在08年数一里,考了一道傅里叶级数的大题,11分,这是任何人都事先都没有想到的。又比如说数一在考查多元函数积分学时,它的大题大多数时候都是出在第二类曲线积分或是第二类曲面积分上的,因为这里有一些很重要的公式和定理,题目比较好出。但__年,数一考的却是一道第一类曲面积分的题目;2011年也只考了一道二重积分的题目,这在以往的考研中都是很少见的,但是看这道题的要求又是在大纲范围之内的`,不能说它超纲。
通过以上的分析,我们要知道考试大纲只是指明了考试的范围,告诉了我们考试的具体内容以及每一部分内容的要求,并没有规定每一部分内容应该占多大的比例。
基于此,建议广大考生在复习的时候尽可能地全面,不要因为某一个知识点在考试中出现得比较少就不重视。也不要去相信什么押题,数学考的是基本功,不是靠一两套模拟试卷就能抓得起来的。
一、基本概念搞懂
所谓把基本概念搞懂,我想是不是应该从以下几个方面来理解和把握。第一个是这个概念产生的实际背景是什么。然后,定义这个概念所运用到的数学思想和方法是什么。接下来这个概念的定义式,它的数学含义,几何意义和物理意义以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能的从这几个方面来理解把握。把概念学懂了,这是学懂数学的至关重要的一步。
二、基本理论搞透
这包含三个方面的内容。第一所谓理论性的内容,定理、性质、推论,你首先要清楚它的条件是什么,结论是什么,这是最起码的要求。然后这些定理、性质、条件它的性质和条件要搞清楚,比如说是充分必要的还是充分必要的。我结合07年的考题给大家说。07年数学二第7个选择题,同学可以回去对照题目看。它是考察二元函数在某一点处可微的一个充分条件。你在学习的时候,你刚开始学高等数学的时候,老师都讲,二元函数在某一点处可微的充分条件是一阶偏导连续。
再比如数学一三四考的第十道选择题,是写边缘概率密度是哪个。告诉你一个二维正态分布。我们在辅导的时候告诉同学,我还总结了一条文登语录,你见到了这个,你第一要想到二维正态分布的边缘分布是正态分布,第二个是边缘现象的任意组合仍然是正态分布,第三个是两个随机变量的不相关和独立是充分必要的,也就是等价的。在这样的情况下,你知道了这些就可以做出正确的选择,所以说基本的理论要搞透,首先搞清楚它的条件和结论,这个条件是充分必要的还是充分的,必须要搞清楚。
基本理论的第二个方面就是要尽可能的从几何和数值的角度来理解这些抽象的理论。反映到今年的考题上,比如说一二三四都用到的一个选择题,基本象限函数这道题,F3、F负2、F2哪个选项正确的问题,如果你的基本的理论搞清楚了,只需要算一个F2就可以了。
基本理论搞透的第三个方面是要注意搞清楚相关理论间的有机联系。这一点,在线性代数这门课中更加的突出。在今年的考题中问你两个矩阵的关系是合同还是相似,我们对这些理论和概念,你如果比较熟练和清楚的话,你就知道找什么东西。我们在讲课的时候说,相似有四等,你一看这两个不相等,肯定不相似,必要条件有一个不满足,肯定是不相似的。合同,你需要找两个矩阵的特征值的,正的特征值和负的特征值的个数,这是要搞清楚基本理论第三个方面,相关理论的有机联系。